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Abstract
In this report, we represent a summer’s work on developing a neuromorphic-computing framework
for solving image-classification problems, with hardware-software codesign. The hardware design
involves developing analog circuits that emulate the functions of various components of human
brains, including excitatory synapse, inhibitory synapse, axon hillock, edge detector, dopamine
reward, all of which are building blocks of a large neural network. The software design involves
simulating a spiking neural network (SNN) with realistic circuit parameters and eventually
synthesizing SNN circuits.

Note 1: the last part of “synthesizing SNN circuits” is not yet done as the author currently does not
possess the knowledge of using the Python-Spice interface, which is taught in EE577A.

Note 2: We assume that the readers already possess some basic knowledge about CMOS transistors ,
neural science, and neural networks. For those unfamiliar with these topics, we refer them to first
watch some crash course tutorials, which are abundant online.

Note 3: The figures presented below may be too small to see clearly. Full figures can be found in the
Appendix 1.2.

1. Introductions

1.1 Neuromorphic Computing

Modern-day electronics, which mostly adopts Von-Neumann architecture, are inherently
bottlenecked by data transfer between memory and computing units. Neuromorphic computing
provides a more efficient computing scheme by combining memory with computing, therefore
avoiding the bottleneck. In addition to having higher computing speed, neuromorphic circuits also
consume less energy because most of their building transistors operate in subthreshold regime and
information is encoded as sparse spikes.

Neuromorphic computing is essentially an analog computing scheme, which builds circuits that
emulate the functions of various components of human brains such as neurons and synapses. This is
somewhat analogous to the concept of Application Specific Integrated Circuits (ASIC) in digital
computers, where we trade general purpose for special optimization of a particular function.
However, due to its architectural advantages, neucomputing has great potential for efficiently
implementing machine-learning related on-chip modules.

1.2 Circuit Components

We design and implement circuit components that each emulates the functions of human-brain
components, including excitatory synapse, inhibitory synapse, axon hillock, edge detector,
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Dopamine-Noise-STDP synapse. These are the most basic components of human brains, and there
are many more such as astrocytes and dendrites, but for now they are sufficient for the purpose of
constructing a simplified neural network model. We can always develop more circuit components if
we decide to include more brain features in our model. We will discuss each of the components
mentioned above later in this report.

1.3 Spiking Neural Network

We organize those circuit components into a system that is the spiking neural network (SNN). SNN
is in many aspects similar to the artificial neural network (ANN) that we are familiar with, as they
share a similar network topology and many computing mechanisms such as matrix-vector
multiplication, thresholding, convolution etc. Their major difference is that SNN has a unique
temporal dimension as it encodes information, or spikes, in the time domain. There have been
various lines of research in the field of SNN: conversion from ANN to SNN [1,2]; directly training
SNN using backpropagation with surrogate gradients [3,4]; training SNN with STDP rule and reward
modulation [5]. More comprehensive reviews can be found here [6,7]. We will describe the
architecture of the SNN that we use in detail later in this report.

2. CMOS Implementation of Circuit Components
In this section, we present the schematics of each circuit component, describe in detail their
working principles, and analyze wave functions we obtain from Cadence simulation.

2.1 Excitatory Synapse

Figure 1. (a) Schematic of Excitatory Synapse (b) Waveform of Cadence simulation

The function of an excitatory synapse is to take an input action potential (AP), which is a spike, and
output a more attenuated but prolonged Excitatory Postsynaptic Potential (EPSP or PSP). The
process lowers the signal strength and extends the overlapping window for multiple PSPs for fault
tolerance in analogue computing.

Figure 1.a shows the schematic of the excitatory synapse. The working principle is as follows:

5



When the input action potential (AP) rises: Vnet6 decreases because it’s essentially AP inverted, and
closes N2; meanwhile, AP opens N1; As a result, Vnet22 gets pulled up by VDD to a limited extent
controlled by P1; Vnet22 opens N6, causing PSP to rise.

When the input action potential (AP) decreases: the mirror of the process described above takes
place. Eventually, PSP gradually gets pulled to ground.

Figure 1.b shows the waveform of Cadence simulation. We clearly see a sharply shaped AP (green
signal), which is a spike, resulting in a more attenuated but prolonged EPSP (red signal).

2.2 Inhibitory Synapse

Figure 2. (a) Schematic of Inhibitory Synapse (b) Waveform of Cadence simulation

The function of the inhibitory synapse is similar to that of the excitatory synapse. It takes in an AP
but outputs a negative PSP. This negative PSP has the effect of lowering the sum of multiple PSPs,
hence the name “inhibitory synapse”.

Figure 2.a shows the schematic of the excitatory synapse. The working principle is almost identical
to that of the excitatory synapse, except that after Vbreak1 opens N6, PSP gets pulled up to vdc=-1, a
negative voltage. We also introduce a biasing voltage vdc=220mV between net031 and gnd! to offset
the voltage drop across N7 due to the leakage current, even when N7 is closed.

Figure 2.b shows the waveform of Cadence simulation. We clearly see a sharply shaped AP (red
signal), which is a spike, resulting in a more attenuated, prolonged and negative PSP (cyan signal).

2.3 Edge Detector with Voltage Adder

In image processing, edge detection is simply convolving a filter with the image. Here, we use the
traditional sliding-kernel as opposed to the FFT approach because the size of kernels is small [8] .
Using the sliding-kernel approach, we simply need to employ a voltage adder to sum up weighted,
or filtered, PSPs in the particular sliding window.
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It’s tempting to think that by simply converging all PSPs into a node can we sum them up. However,
physics law tells us that only currents get summed up this way. In fact, it is a bit more troublesome
to implement a voltage adder. Previous DR students used current mirror voltage adder, which
requires some effort for parameter tuning. Here, I use the most straightforward non-inverting
Op-amp voltage adder. Note that the resisters involved can simply be replaced by pass transistors.

Figure 3. (a) Schematic of omp adder (b) Waveform of Cadence simulation

Figure 3.a shows the schematic of the voltage adder. It is a standard non-inverting voltage adder. It
takes in three PSPs and outputs their summation. In principle, we can sum up an arbitrary number
of PSPs simply by adding more input ports.

Figure 2.b shows the waveform of Cadence simulation. We clearly see that the output voltage (cyan
signal) is the sum of two input PSPs (red & green signal). Note that the exact voltage may deviate
from the ideal equation and may vary with a different number of inputs. It takes a bit of parameter
tuning over the values of resistors.

2.4 Axon Hillock Circuits

Figure 4. (a) Schematic of Axon Hillock (b) Waveform of Cadence simulation

The Axon Hillock circuit reverses the input and output relationship of the excitatory synapse circuit.
It takes in PSP and outputs a spike if the amplitude of PSP exceeds a certain threshold. This circuit
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provides the nonlinearity that is crucial to generalization ability of neural networks. Figure 4.a
shows the circuit schematic. The working principle is described in Appendix 1.

Figure 4.b shows the waveform of Cadence simulation. We clearly see that the input PSP (orange
signal) with 500mV amplitude exceeds the threshold of the NMOS transistor and triggers the Axon
Hillock circuit to make an output spike.

2.5 Cascading Circuits

Now that we have excitatory synapse circuit that takes input AP and outputs PSP, and Axon Hillock
circuit that takes input PSP and outputs AP, we need to match their waveforms such that the output
of one circuit is in the proper operating input range of the other circuit, and vice versa. Only this
way can we construct a cascade of circuits, or multi-layer neural networks, in which signals
propagate with little attenuation or distortion.

Figure 5. (a) schematic of cascading circuits (b) Waveforms of cascading circuits

Figure 5.a shows the schematic of cascading circuits. The signal propagates as follows: three
artificial input spikes (AP1, AP2, AP3) goes through three excitatory synapses and produces EPSP1,
EPSP2, EPSP3, which gets summed up by the voltage adder and goes into the axon hillock circuit,
producing AP_OUT, which is then fed into excitatory synapse circuit to produce EPSP_layer2.

Figure 5.b shows the waveform after cascade synapse circuits and Axon Hillock circuits. We see
that the output EPSP (blue signal) of the second-layer axon hillock circuit produces the same EPSP
as the first layer synapses (first three signals) do. It means that our
Input_Spike->Synapse->EPSPs->Neuron->Realistic_spike->Synapse->realistic_EPSP signal chain now
forms a closed loop with little attenuation or distortion while propagating through multi-layers.
With this verified, we can proceed to construct multi-layer neural networks.

Note that we have modified some parameters of the original excitatory synapse and axon hillock
circuits presented above to match their input and output operation range.
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2.6 STDP circuit

The excitatory and inhibitory synapse described above has only fixed weights. We still need a
variable synapse that can adapt its weight based on the STDP learning rule. We first design the
circuit component that emulates STDP features. Tutorials online have often assumed a simplified
version of the STDP rule. Here, we adopt the version used in Kun Yue’s thesis [9], which captures
richer neural dynamics, as shown in Figure 6.a.

Figure 6. (a) Schematic of STDP circuit in Kun’s thesis (b) Schematic of STDP circuit we implement

When a presynaptic potential arrives, it pre charges Xpre. Then, several scenarios may occur:

If postsynaptic potential arrives immediately afterwards, it blocks the Xpre brom discharging
through P1, which maintains set signal, and allows Xpre to keep N1 open, which discharges Xpost
and avoids triggering the reset signal. This is scenario 1 in Kun’s thesis.

If postsynaptic potential arrives afterwards after a long time, Xpre already leaks away, so there
won’t be any set signal. The low Xpre cannot keep N1 open, so the reset signal cannot be pulled
down and gets pulled up, or triggered, by the post signal from above. This is scenario 3 in Kun’s
thesis.

If postsynaptic potential arrives after a somewhat long time, between the range in scenario1 and
scenario 3, we can naturally interpolate between the two extreme scenarios, that is, the signal
strength of the set and reset signal linearly vary with the time difference. This is scenario 2 in Kun’s
thesis.

Note that Kun further discretizes the set and reset signal by feeding them into a pulse trigger. This is
because he needs the pulses to control the resistance of memristors, which is the way to store
memory in his setup. Since we only store memories in voltage nodes (shown later) as opposed to
resistance of memristors, we do not need the pulse trigger and can directly utilize the raw set and
reset signal.

Furthermore, this STDP circuit is not a synapse circuit by itself; rather, it only generates set and reset
signals, which can be considered to be opposing signals that determine the direction and extent of
changing synaptic weights. We need to append the circuit to an actual synapse circuit.
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Knowing the working principle of STDP circuit, we implement it on our own. Figure 7.b shows the
schematic of our STDP circuit.

Figure 7 shows a series of waveforms corresponding to varying time differences between
presynaptic signal and postsynaptic signal, ranging from {1, 2, 3, 4, 5, 15}ns. We clearly see that as
time difference increases, the Set signal gets weaker (blue signal) and that Reset signal gets stronger
(purple signal). Note that the raw set and reset signal may need to be amplified later to exert notable
effects on a voltage node.

Figure 7. Waveforms of STDP circuit simulations
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2.7 STDP-Dopamine-Noise (SDN) Synapse Circuit

Now that we have the STDP circuit to give set and reset signals, we need to incorporate it into a
synapse circuit. The STDP-Dopamine-Noise Synapse Circuit has multiple functions: it receives STDP
signals (set and reset) and changes the synaptic weight accordingly; it receives dopamine signals
and responds accordingly; it receives noise signals, which is important to kickstart neural activities.

Figure 8.a shows the schematic of this multi-purpose circuit, which is adapted from Kun’s thesis.
The working principle is fairly straightforward: we simply add to the original excitatory circuit
(black colored) with extra control circuits (blue colored) that take in external STDP (NT Increase /
Decrease), Dopamine, and Noise signals. The synaptic strength is stored at the NT voltage node.

However, notice that there are some differences between the original excitatory synapse circuit and
the black colored circuit shown here, with the main difference being that in the black colored circuit
there is an NT node that controls the transistor conductance, or the synaptic weight. Figure 9.a
shows the schematic of our implementation of the black-colored part of the circuit, which we call
NT synapse. Figure (b)-(d) shows the waveforms of simulation of NT synapse with various NT
voltages {1.8V, 0.5V, 0V}. We clearly see that when NT=1.8V the NT synapse functions just like the
original excitatory signal, and that as NT decreases, the amplitude of EPSP (purple signal) also
decreases. Hence, by varying NT node voltage with external signals (STDP, dopamine, noise) can we
directly change the synaptic weight.

Note: the implementation of this SDN synapse circuit is not fully done, as it is a bit troublesome to
implement the Noise circuit, which generates Noise signals. The simulation in Kun’s paper achieves this
functionality through random initialization in software. The Dopamine circuit should be designed in
tandem with the network architecture and will be described later in the report. It is a challenging yet
worthwhile task to implement a full SDN circuit that integrates the STDP circuit, Noise circuit,
Dopamine circuit into the excitatory synapse, and that operates in a compatible voltage range with the
rest of the circuit. We leave the work to future DR students.

Figure 8. (a) Schematic of multi-purpose synapse circuit in Kun’s thesis. (b) Waveforms of
corresponding simulation in Kun’s thesis.
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Figure 9. (a) Schematic of NT synapse. (b)-(d) Waveforms of Cadence simulations of NT synapse
circuit with various NT voltages.

3. Python Simulation of SNN
Now that we have all the circuit components, we can draw the circuit schematic of a full neural
network out of these building blocks. However, we immediately see that the task is quite
challenging, if not unrealistic, because of two reasons: first, it is extremely laborious and
error-prone to connect all connections by hand, especially when the network size is large; second, it
is very slow (sometimes days) for a software such as Cadence to simulate a large neural network,
much slower than running a neural network written in code, which makes it impossible to actively
test and revise the neural network back and forth. Hence, we must adopt the approach of using
software for designing and testing neural networks then synthesizing the hardware circuit based on
the verified software model. Hence, this approach is named “software-hardware codesign”.

3.1 SNN Architecture

Figure 10 shows a toy SNN architecture. Blue blocks represent a layer of neurons while green
blocks synapses. The overall workflow is as follows:
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In the current setup, we have input images of size 3*3. The first layer of synapses are four 2*2 edge
detectors in ↑, ↖, ←, ↙ directions, resulting in 4*2*2 outputs for each input image. This layer of
synapses exactly corresponds to the convolutional layer in traditional machine learning. The 4*2*2
neurons are flattened and enter the STDP synapse layer, where synapses are initialized with random
weights and update themselves according to the STDP rule. This layer functions like a
self-organizing map and gives rise to distinctive output patterns for each class of input. The outputs
at this pattern layer are then fed into the DNS layer, which uses Dopamine feedback signal to force
those patterns into the one-hot fashion at the output layer, where each neuron represents a
particular class. The function of dopamine signals is to inhibit the natural synapse decays for
synapses that contribute to elevating the potentials of the correct output neurons. Note that the
edge detection synapse layer has all synaptic weights fixed, the STDP layer self-evolves without
supervision, and the DNS layer is somewhat similar to the reinforcement learning.

Table 1 shows the pseudocode of the algorithm. Note that the SNN is trained layerwise for
computational efficiency. More details of implementation can be found in the code file, which may
be slightly different from the pseudo code in terms of coding manner.

Note that all the components involved in this SNN architecture have their CMOS counterparts.
Hence, it is a natural next step to directly map the software model onto a SPICE model that can be
run by Cadence.

Figure 10. Diagram of a mini SNN architecture

3.2 Python Implementation

We implemented the SNN using PyTorch library to allow for convenient GPU acceleration and thus
better scalability. The neural network is constructed layerwise, and all values are stored in
torch.tensors for potential GPU deployment. The code contains Neurons, Synapses, Network classes
as building blocks, and the mini SNN architecture described above is implemented in Main.py.
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Algorithm:
Train():

input_neurons = GetImage() # four 3*3 images
image_num = input_neurons.shape[0]
# compute conv layer
kernels = GetKernels() # four 4*4 kernel
for idx = 0 to image_num:

conv_neurons[idx] = conv2d(input_neurons, kernels) # 4*2*2 for each images
Flatten(conv_neurons)
# train stdp layer
stdp_synapses = Random()
for iter = 0 to 12:

idx = iter % image_num
pattern_neurons[idx] = mul(conv_neurons, stdp_synapses)
stdp_sypases.STDP()

# train dopa layer
dopa_synapses = Random()
for iter = 0 to 10:

for idx = 0 to image_num:
dopa_synapses.Dopa(idx)
dopa_synapses.Decay()

Test(idx):
input_neurons = GetImage()[idx] one 3*3 image
output_neurons = mul(mul(conv2d(input_neurons, kernels), stdp_synapses), dopa_synapses)

Table 1. Algorithm for training the mini-SNN

3.3 Code Simulation Results

Since everything before the STDP layer has fixed parameters, it is not interesting to analyze this part
other than verifying its correctness. For the STDP layer outputs, Figure 11.a clearly shows that for
each of the four input images, there is a unique output firing pattern. Figure 11.b shows the effect
of forcing those patterns into one-hot output neurons using dopamine signals. We clearly see that
for each image, the neuron with the highest output potentials correctly corresponds to the class of
the image.

Note that we only developed a mini-SNN that takes in 4 classes of 3*3 images, just for the sake of
demonstrating the correctness of its working principles. The prospect of extending the mini-SNN to
operate on larger images dataset seems promising. Also, we have made some arbitrary choices for
certain parameters, which may not exactly correspond to our CMOS circuits. We need to
synchronize them in the end .
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Figure 11. (a) output at the pattern layer: for each of the four input images, there is a unique output
firing pattern as represented by each row (b) neural potentials at the one-hot output layer

4. Future Work
In this section, I provide some suggestions for future DR students about possible directions of
proceeding with the unfinished project.

● Hardware:
○ As has been explained in the note of section 2.7 STDP-Dopamine-Noise (SDN) Synapse

Circuit, we need to have a compatible, fully integrated SDN synapse.
○ For now all the circuit components only have schematics. We need to implement

their corresponding layouts as well.
○ Optional: it may be interesting to have a STDP circuit that has an adjustable

synaptic-weight range spanning both the positive and negative regime. It may not be
biological but may be useful if we need such a feature in the software model.

● Software:
○ As has been explained in the start of section 3. Python Simulation of SNN, we need to

learn how to use the Python-Spice interface so that we can automate the generation
of the spice model of circuits and directly feed it into Cadence for simulation. This is
the approach Kun used in his thesis. This topic can be learned and practiced in
EE577A.

○ While one may relatively easily master the technique of automatically generating the
spice model of circuits if he/she has already taken EE577A, it may be a lot more
difficult to automate the generation of layout for the whole neural network. Again, it
is impossible to draw all connections by hand because it is too laborious and error
prone. From my limited knowledge, it may be an active area of research in the
machine learning field.

○ We need to enrich the features of the Python library. For now, it only deals with
binary input values. We need to modify the code to be compatible with more
quantization levels, which may require rate or temporal encoding. It would be nice if
the code is simultaneously adaptable to both. I personally think such a library is
extremely useful to the general neuromorphic community.

○ We need to scale up the neural network such that it is deeper (maybe more
convolutional layers) and can process larger image sets such as MNIST and
CIFAR-10.
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Appendix

1. Axon Hillock Circuit Tracing

The initial conditions are: X6 is on; X5 is on; X4 is off; B is high, so X1 is on; C is high, D is low.

When Vsoma rises, A rises, turning on X2, which pulls down C, which turns on X8, causing AP to rise.

When AP rises X6 is off and X4 is on, which lowers B, which increases D through the inverter, which
turns on X7, which pulls down AP; also, the lowered B increases C, which turns off X8, which pulls
down AP.

When Vsoma is lowered, A is lowered, so is the gate of X11, making AP to stay low, which makes B
high, C high, and D low, as is the initial condition

2. Full Figures

All full figures can be found here: https://github.com/haoqindeng/DR-_SUMMER2021
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