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Optical neural networks (ONNs), implemented on an array of cascaded Mach–Zehnder interferometers (MZIs), have
recently been proposed as a possible replacement for conventional deep learning hardware. They potentially offer higher
energy efficiency and computational speed when compared to their electronic counterparts. By utilizing tunable phase
shifters, one can adjust the output of each of MZI to enable emulation of arbitrary matrix–vector multiplication. These
phase shifters are central to the programmability of ONNs, but they require a large footprint and are relatively slow. Here
we propose an ONN architecture that utilizes parity–time (PT) symmetric couplers as its building blocks. Instead of
modulating phase, gain–loss contrasts across the array are adjusted as a means to train the network. We demonstrate that
PT symmetric ONNs (PT-ONNs) are adequately expressive by performing the digit-recognition task on the Modified
National Institute of Standards and Technology dataset. Compared to conventional ONNs, the PT-ONN achieves a com-
parable accuracy (67% versus 71%) while circumventing the problems associated with changing phase. Our approach
may lead to new and alternative avenues for fast training in chip-scale ONNs. © 2021 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.435525

1. INTRODUCTION

The computing power of modern electronics, which adopt the
Von-Neumann architecture, is inherently bottlenecked by the data
transfer rate between the processing and memory units. Emerging
computing architectures, such as neuromorphic approaches [1,2],
represent more effective computational schemes by intertwining
logic with memory. In recent years, optical platforms have once
again been proposed as a promising candidate for fully/partially
replacing electronic-based computing machines. Optical comput-
ing is particularly of interest because of the prospect of requiring
lower energy per bit and having less latency [3–10]. In 2017, a
team of researchers from MIT demonstrated a ground-breaking,
fully integrated optical neural network (ONN) on a silicon chip
[3] by cascading a number of Mach–Zehnder interferometers
(MZIs). An arbitrary matrix can be effectively mapped onto
this ONN hardware by computing the corresponding phases of
each MZI. For such networks, the required nonlinearities can be
implemented through various approaches that utilize intensity
modulators [11], the saturation effect of cameras [12], quadratic
nonlinearity of photodiodes [13], saturation of semiconductor
amplifiers [14], and saturable absorbers [15–17], to name a few.
Since then, a number of schemes have been proposed to further
optimize the implementation of these arrays and their on-chip
training processes [18–21].

While ONNs are receiving considerable attention in both
academic and industrial settings, it is now clear that changing
phases on chip is undesirable and can significantly overshadow
the potential benefits of photonic accelerators [22,23]. In these
arrangements, phase changing is typically accomplished by

thermo-optical phase shifters, where a bias current is applied to
change the refractive index of an optical waveguide through the
thermo-optic effect [3,24]. However, since the thermo-optic
coefficient of most optoelectronic materials is relatively small,
translating it to a phase change requires a path length that is typi-
cally of the order of tens to hundreds of micrometers [24]. Given
that for processing N bits of data, O(N2)phase shifters are needed,
such schemes can lead to prohibitively large structures as the size of
the data increases. Moreover, the time it takes for the phase change
to take effect is relatively long, of the order of tens of microseconds
[24], which can limit the speed of on-chip training processes,
where one needs to frequently vary phases to compute gradients.
A number of recent works have aimed to address these problems
by proposing alternative architectures that make use of optical fast
Fourier transform (OFFT) [23], ring resonators [25,26], acousto-
optic modulators [27], and 3D printing [22]. Other approaches
based on phase-change materials, electro-absorption, and electro-
optic effect may also solve some of these issues, but the technology
is still maturing [28–31].

However, the choice of cascaded passive MZIs for implement-
ing ONNs is not related to the fundamentals of neural networks;
rather, it comes from the mathematical convenience of express-
ing an arbitrary matrix into MZI-representable sub-systems
through unitary matrices and singular value decomposition (SVD)
[32,33]. It is well known that such unitary matrices can be readily
implemented in passive optical platforms such as silicon or sili-
con nitride wafers using a combination of MZIs. Nevertheless,
since the original matrix (Wi, j ) is generally non-unitary, ampli-
fication/attenuation has to inevitably be deployed in the optical
implementation of ONNs. In addition, laser light is already used
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in such networks. With on-chip optical settings, lasing is typically
achieved by pumping and carrier injection in appropriate III-V
compound semiconductors. Moreover, saturable absorbers are
considered as one of the choices for the activation function in the
optical domain [3,17]. Most such elements are based on III-V
semiconductors as well. Finally, as the network becomes larger,
optical amplification may be needed in compensate for inevitable
optical losses. Given the omnipresence of amplification in ONNs,
it may be beneficial to explore alternative ONN architectures in
which gain–loss is used in lieu of phase shifters.

In this paper, we propose a new architecture based on parity–
time (PT)-symmetric couplers [34] that can partially address some
of the problems of current ONNs by using optical gain–loss in
III-V semiconductors or other gain materials. We refer to this
architecture as PT-symmetric ONN (PT-ONN). It borrows the
cascading structure from [3] to ensure that a large number of free
parameters are available and that the network is sufficiently expres-
sive to distinguish patterns. We show that even at low/moderate
levels of gain–loss contrast, our network can provide a performance
comparable to that of passive optical systems with phase shifters.
Some practical considerations concerning the physical realization
of these networks will also be discussed. As will be shown, our
approach of replacing phase shifters with PT-symmetric couplers
has the potential to significantly reduce energy consumption,
increase training speed, and lower the footprint in on-chip ONNs.
More novel and practical PT configurations can be used to further
improve the operation of ONNs.

2. PT-ONN ARCHITECTURE

The main building block of PT-ONN is a two-level PT-symmetric
directional coupler whose gain–loss factors can be tuned either
individually or together [34]. In general, a structure is considered
to be PT symmetric if it is invariant under the simultaneous action
of the P (space) and T (time) inversion operators. Despite having
a non-Hermitian representation, these systems may still support
entirely real spectra (eigenvalues). While originally developed in
the context of quantum mechanics, PT-symmetric notions have
lately attracted considerable attention in different areas of optics,
including photonic lattices, micro resonators, gratings, sensors,
wireless power transfer, and lasers, to name a few [35–41]. In
optical settings, a structure is PT symmetric if the real part of the
refractive index is an even function of space, while the imaginary
component (representing gain and loss) exhibits an odd profile.
Here, a PT coupler refers to a coupled waveguide system in which
one channel experiences gain and the other an equal amount of
loss. Consequently, the propagation constants are the eigenvalues,
and the electromagnetic modes represent the eigenvectors of the
system. The ratio of gain–loss contrast to coupling serves as a
parameter that largely determines the response of the structure. In
fact, when this ratio becomes equal to unity, it can be shown that
both eigenvalues and eigenvectors of the structure coalesce. This
point that represents a spontaneous symmetry breaking is known
as an exceptional point. In this study, we operate our PT couplers
in the PT-unbroken regime, where the governing parameter is less
than unity and the system works below the exceptional point [35].
Figure 1 compares the PT coupler with a tunable MZI system.

In a PT coupler, the energy exchange between the two
waveguides obeys the following system of equations [34]:

Fig. 1. (a) Mach–Zehnder interferometer composed of two cascaded
50/50 beam splitters, with a phase shifter sandwiched in between. (b) PT-
symmetric directional coupler comprising a pair of waveguides, one
experiencing gain and the other a similar amount of loss. Constant phases
(φ11, φ12, φ21, φ22) are added in the input and output ports to turn the
transfer matrix entirely real.

{
i da

dz − i g
2 a + κb = 0,

i db
dz + i g

2 b + κa = 0,
(1)

where a and b represent the electric field in the two waveguides, κ is
the coupling strength, z the propagation length, and g signifies the
gain–loss contrast. The relationship between input (a0 and b0) and
output (a and b) ports [see Fig. 1(b)] can be derived in two differ-
ent regimes of operation. Below the PT symmetry breaking point
(where g /2κ ≤ 1), the coupling matrix is expressed by[

a
b

]
=

1

cos θ

[
cos (Z cos θ − θ) i sin (Z cos θ)

i sin (Z cos θ) cos (Z cos θ + θ)

] [
a0

b0

]
,

(2)
where θ = sin−1(g /2κ) and Z = κz. On the other hand, in the
PT-broken phase (i.e., above the PT symmetry breaking point), the
PT coupler behaves according to[
a
b

]
=

1

sinh η

[
sinh(Z sinh η+ η) i sinh(Z sinh η)

i sinh(Z sinh η) sinh(η− Z sinh η)

] [
a0

b0

]
,

(3)
where g /2κ = cosh η. As expected, in both scenarios, the transfer
matrices are non-unitary due to the inherent non-Hermiticity of
the device.

In this work, we use PT couplers exclusively in the PT-unbroken
phase. In other words, the gain–loss contrast in the system is only
minimally perturbed around zero values (here g /2κ < 0.2). By
adding appropriate constant phases to the input (−π/2,−π ) and
output arms (π/2, π ), the transfer function can be modified to act
only in real space:[

a
b

]
=

1

cos θ

[
cos (Z cos θ − θ) − sin (Z cos θ)

sin (Z cos θ) cos (Z cos θ + θ)

] [
a0

b0

]
.

(4)
In our network, we also assume a constant κ and z for all

couplers, where Z = κz= 1. This leaves us with the gain–loss
contrasts (g ′ s) as the only on-chip parameters to be used for train-
ing (i.e., no phase modulation is required). This can be readily
achieved in standard III-V semiconductor systems by pump-
ing/carrier injection. Since varying gain–loss coefficients can be
more efficient than changing phases in terms of space, power con-
sumption, and speed, our PT-ONN architecture can potentially
require a smaller footprint and accelerate on-chip training at lower
powers.
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Fig. 2. Overall structure of a two-layer PT-ONN. In layer 1, lasers encode N1 pixels. The optical signals are first sent to a triangular-shaped array of
(N1(N1 − 1)/2) PT-symmetric couplers. The light then passes through N2 amplifiers/attenuators followed by the second triangular-shaped array of
(N2(N2 − 1)/2) PT couplers before encountering N2 nonlinear elements. The second layer, represented by the star, contains similar elements, but with
N2 and N3 values. This layer terminates with N3 photodetectors. Values N1, N2, N3 represent the dimensionality of input, hidden, and output layers,
respectively. DC, directional coupler; NE, nonlinear element; PD, photodetector.

3. COMPUTATIONAL EXPERIMENTS AND
RESULTS

Figure 2 shows a schematic of the two-layer PT-symmetric ONN
used in our simulations. In layer 1, N1 pixels of the incoming
data are encoded in light amplitude (provided by a series of
laser sources/beams). After modulating the data on the carrier
frequency, it travels in a triangular-shaped array containing
N1(N1 − 1)/2 PT-symmetric couplers, followed by N2 ampli-
fiers/attenuators, another triangular-shaped array of PT couplers
containing N2(N2 − 1)/2 components, and finally N2 nonlinear
elements. Layer 1 is followed by layer 2, which is similar to the first
layer in architecture but with different numbers of elements (N2

and N3 instead of N1 and N2) and ends in N3 optical detectors. The
output of the detectors is then sent to an electronic circuit to calcu-
late the PT-coupler gain–loss parameters (θ ′ s) to implement the
gradient descent algorithm in the training cycles. In this example,
N1, N2, and N3 are the sizes of input, hidden, and output layers,
respectively.

The simulations are performed for the digit recognition task
on the MNIST dataset [42]. To accomplish this, the 28× 28
pixel images are subsampled by a factor of 16 to be 7× 7 pixel
images for computing efficiency improvement. In our studies,
we use an input layer of size 7× 7 (N1 = 49), hidden layer of
size N2 = 20, and output layer of N3 = 10 dimensionality (cor-
responding to 10 digits). We use a sigmoid activation function
for the hidden layer (this choice is regardless of the hardware
used for implementation of the nonlinear function), SoftMax
activation function for the output layer, and cross-entropy as the
loss function. The simulations are run with Python programs
on an Intel i9-9900 k CPU. We also assume that all parameters
are randomly initialized. For on-chip training, we compute the
numerical gradients of the designed parameters using the finite
difference method. By forward propagating the network with
parameters θi +1θ and θi −1θ , we can measure the output and
compute f (θi +1θ) and f (θi −1θ), where f is the loss func-
tion that is going to be minimized. We then compute the partial
gradient ∂ f /∂θi = ( f (θi +1θ)− f (θi −1θ))/21θi , and use
stochastic gradient descent (SGD) to minimize the loss function.

To allow for appropriate benchmarking, in all the following
experiments, we use a two-layer neural network structure with
the same topology, where there are N1 input neurons, N2 hidden
neurons, N3 output neurons, and the same set of activation and loss
functions. We apply the neural network topology to three experi-
mental settings, with different parameter spaces. First, we simulate
a classical neural network with parameters being the weight matrix
Wij for each layer. Then, we model an MZI-based ONN in which
phases of the MZIs serve as the parameters. The MZI mesh is

Fig. 3. (a) Training and testing accuracies of a classic neural network
using backpropagation method. (b) Training and testing accuracies of
an optical neural network made of MZIs and using phase shifters as
parameters.

arranged in the triangular fashion inspired by [3], which uses
SVD. The schematic of this ONN can be found in Supplement
1, Section 1. Finally, we replace MZIs with PT couplers. In this
case, the training parameters are gain–loss factors. We use the same
topology of the mesh in the second and third simulations to allow a
direct comparison to be made.

Using the traditional backpropagation method to compute
gradients and the SGD method to minimize loss function, we
first train the network on the subsampled dataset and achieve a
peak training accuracy of 77.5% and a testing accuracy of 78.5%
[Fig. 3(a)]. This experiment serves to validate our subsampled
image set and the two-layer neural network topology. The reported
training and testing accuracies are considered to be the upper-
bound for a network of the same topology (topology as in the
number of layers, number of neurons in each layer, nonlinearities,
and the loss function), since on-chip trainings that operate in
different parameter spaces are generally expected to achieve lower
accuracies.

Next, we study the ONN that emulates the structure used in
[3], albeit with a different size (N1, N2, N3), by simulating the
on-chip training process. More specifically, the transfer function
between each layer is not represented by a single matrix; rather,
it is the product of cascading two-level transfer matrices that
represent MZIs, where the phases are the parameters to be trained
(see Supplement 1, Fig. S1). By training the network using the
numerical method described above, we achieve a peak training
accuracy of 69% and a peak testing accuracy of 70.2% [Fig. 3(b)].

Finally, we evaluate the performance of the PT-ONN archi-
tecture by choosing Z to be equal to one. The on-chip training
process is the same as above, except that we carry out SGD only on
the gain–loss dependent θ variables. Our simulations show a peak
testing accuracy of 66.5% and a peak training accuracy of 67.2%
[Fig. 4(a)]. This result confirms that our PT-ONN is as expressive
as the MZI-based ONNs. The confusion matrix is reported in
Supplement 1, Section 2 (see Fig. S2). Furthermore, the training

https://doi.org/10.6084/m9.figshare.16652299
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Fig. 4. (a) Training and testing accuracies of the parity–time-
symmetric neural network. (b) Training and testing accuracies of
PT-ONN in the presence of noise. Here the accuracies are normalized
against the zero-noise situation.

process was performed three times, and the standard deviation is
reported in Supplement 1, Section 3 (see Figs. S3 and S4).

To further assess the robustness of our PT-coupler-based archi-
tecture, we simulate the PT-ONN under a noisy environment.
Since the gain factors are used as training parameters, we consider
their variation as the main source of error. For this study, the gain
contrast dependent parameters θ s are perturbed by a Gaussian
distribution p(1θi )= exp(−1θ2

i /(2σ
2))/
√

2πσ , where σ rep-
resents the strength of the noise. These perturbed two-level systems
will result in new transfer functions for the network. Under this
scenario, we use the same technique to simulate on-chip training
and report the influence of noise level on the final training and
testing accuracies in Fig. 4(b). As compared to the result reported
in [8], where the network has significant performance degradation
when σ exceeds 0.01, our design appears to be more resilient to
noise.

4. DISCUSSION

In this work, we demonstrated that PT-ONN architecture using
gain–loss contrast as the training parameter can achieve on-chip
training and testing accuracies comparable to those reported in
ONNs composed of MZI devices with phase shifters. Our PT-
ONN also shows robustness to variations of its parameters (θ ′ s),
in addition to having the advantages of a smaller footprint, lower
power consumption, and perhaps higher training speed.

In our implementation of the PT-ONN, |θ ′s| remain below
0.2. The distribution of the gain–loss contrast parameters (θ ′s) is
shown in Fig. 5, where most coefficients happen to be in the−0.1
to 0.1 range, and the average θ value is approximately−2× 10−4.
Our electromagnetic simulations show that a low to moderate level
of gain will be adequate to reach the desired network performance.
If the length of the coupling region is selected to be z= 25 µm,
one can adjust the spacing between the two waveguides to tune
the strength of the coupling coefficient (κ) to keep the required
gain within the attainable range afforded by III-V semiconductor
materials. For example, for a coupler operating at a wavelength
of 1.55 µm, and a coupling coefficient of κ = 4× 104 m−1, the
maximum required gain coefficient is γ = g /2 = 80 cm−1, and
the average gain per coupler is γ = g /2 = 20 cm−1 (given that
average value of |θ ′s| is 0.05), which are well within the attainable
range in most InGaAsP quantum well structures. One should
notice that the length may be further reduced by choosing Z to be
smaller than unity.

We also compared our PT-ONN against the MZI-based
network in terms of footprint, switching speed, and power con-
sumption. Because they share the same network topology, we

Fig. 5. Distribution of gain–loss contrast variable parameters (θ ′s) in
PT-ONN.

compare only individual PT and MZI blocks. The state-of-the-art
Joule heaters are reported to have a π phase shift with a power
requirement of the order of 20 mW and a switching time of a few
microseconds, with the reported length of the heater to be a few
hundreds of micrometers [43]. On the other hand, for the maxi-
mum gain of 80 cm−1, a PT coupler at a length of 25 µm requires
∼220 µW of power to amplify a 1 mW signal. However, the aver-
age power required per PT coupler is merely ∼50 µW. Even at
a quantum efficiency of 10%, the required power is ∼0.5 µW,
which is still considerably lower than what is reported for phase
shifters. Semiconductor amplifiers can also be modulated at a
sub-nanosecond time scale [44].

One additional benefit of this approach is the possibility of
implementing the entire PT-ONN using III-V semiconductor
materials in a monolithic fashion. The required gain–loss can be
achieved by pumping, and one possible candidate for realizing
nonlinearity is III-V saturable absorbers [3,17]. Waveguides can
be realized using the quantum well intermixing (QWI) method
[45–47], which changes the refractive index of III-V materials
through inducing defects, or selective area regrowth. Finally,
the detectors can be implemented on chip through an epitaxial
regrowth process. With the advancements in heterogenous integra-
tion, one can also envision a multi-material platform to achieve the
desired functionalities.

While in this study, we remained faithful to the exact PT-
symmetric coupler, it is well known that the functionality of this
device remains primarily unaffected if one of the waveguides is
nominally loss free (e.g., through intermixing) and gain–loss is
applied exclusively to the other waveguide. Novel designs for PT
couplers that allow more fabrication-friendly arrangements can be
explored in future works.

It should be noted that compared to MZI-based ONNs (such
as that in [3]), our PT-ONN cannot easily map an existing weight
matrix onto the hardware by algorithmically computing the cor-
responding on-chip parameters. This is also the case for some
quantum neural networks [48]. While this mapping will hardly
lead to a functioning platform due to hardware variances (or
component imprecision), it nevertheless provides a good starting
point from which one can fine-tune the network using on-chip
training methods [18,49]. It may be of future interest to find better
strategies to initialize the on-chip parameters of PT-ONNs.

Varying gain across the array may seem advantageous when
compared to changing phases, in terms of time, power, and space
management; however, it also introduces extra noise due to spon-
taneous emission. In the gain region, electrons in the excited state

https://doi.org/10.6084/m9.figshare.16652299
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could spontaneously drop to a lower state and emit photons that
are not necessarily coherent with respect to the incoming signal.
Although the above simulation accounts for random gain varia-
tions, further analysis may be needed to more quantitatively assess
the role of spontaneous emission noise in PT-ONN architectures.
In addition, phase-intensity coupling can further complicate the
training mechanism by introducing nonlinearity in the couplers.
However, our current system is not expected to be severely affected
by this effect due to the low average gain–loss contrasts. This
aspect is discussed in Supplement 1, Section 4. Nonetheless, as
the network grows, this could become an issue that needs further
consideration.

In conclusion, in this work we introduced for the first time
an expressive III-V network based on PT-symmetric couplers for
implementing reconfigurable ONNs without requiring changing
phases. Our work may open up new avenues for realizing fast,
efficient, monolithic, and compact ONNs on chip.
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