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Abstract—In the last decades, we have witnessed the
rapid growth of Quantum Computing. In the current Noisy
Intermediate-Scale Quantum (NISQ) era, the capability of a
quantum machine is limited by the decoherence time, gate
fidelity and the number of Qubits. Current quantum computing
applications are far from the real “quantum supremacy” due to
the fragile physical Qubits, which can only be entangled for a
few microseconds. Recent works use quantum optimal control
to reduce the latency of quantum circuits, thereby effectively
increasing quantum volume. However, the key challenge of this
technique is the large overhead due to long compilation time.

In this paper, we propose AccQOC, a comprehensive
static/dynamic hybrid workflow to transform gate groups (equiv-
alent to matrices) to pulses using QOC (Quantum Optimal
Control) with a reasonable compilation time budget. AccQOC
is composed of static pre-compilation and accelerated dynamic
compilation. After the quantum program is mapped to the quan-
tum circuit with our heuristic mapping algorithm considering
crosstalk, we leverage static pre-compilation to generate pulses
for the frequently used groups to eliminate the dynamic compila-
tion time for them. The pulse is generated using QOC with binary
search to determine the latency. For a new program, we use the
same policy to generate groups, thus avoid incurring overhead
for the “covered” groups. The dynamic compilation deals with
“un-covered” groups with accelerated pulse generation. The key
insight is that the pulse of a group can be generated faster based
on the generated pulse of a similar group. We propose to reduce
the compilation time by generating an ordered sequence of groups
in which the sum of similarity among consecutive groups in the
sequence is minimized. We can find the sequence by constructing
a similarity graph — a complete graph in which each vertex is
a gate group and the weight of an edge is the similarity between
the two groups it connects, then construct a Minimum Spanning
Tree (MST) for SG. With the methodology of AccQOC, we
reached a balanced point of compilation time and overall latency.
The results show that accelerated compilation based on MST
achieves 9.88× compilation speedup compared to the standard
compilation of each group while maintaining an average 2.43×
latency reduction compared with gate-based compilation.

Index Terms—quantum computing; quantum optimal control;
pre-compilation;

I. INTRODUCTION

The idea of Quantum Computer [2] has been proposed

for decades. In recent years, we have witnessed many break-

throughs in building a quantum machine [7], [10], [19]. IBM

[21] and Google [16] have demonstrated working quantum ma-

chine with 50 bits and 72 bits. Google claims to have built the

first quantum computer that can carry out calculations beyond

the ability of today’s most powerful supercomputers [4]. This

indicates that we have entered the era of Noisy Intermediate-

Scale Quantum(NISQ) [33], where we expect to see a quantum

machine with hundreds or thousands of Qubits outperforming

classical supercomputers in the coming decades. However, the

Qubits inside a NISQ device are far from perfect. First, the

connection between Qubits is sparse. Second, the operations of

Qubits are vulnerable to errors due to insufficient decoherence

time. The sparsity of Qubits means that 2-bit operations are

not supported for all Qubit pairs. Furthermore, the limited

number of Qubits makes it unrealistic to implement quantum

error correction code(ECC) [6], [31], [38], which would need

thousands of Qubits. Therefore, current quantum computers

suffer from high gate error rates. Consequently, large-scale

programs like Shor algorithm [36] or Grover Search algorithm

[14] could not be implemented on NISQ devices.

In the NISQ era, the capacity of a quantum machine is

limited by its quantum volume — determined by the number

of Qubits and the decoherence time — and gate error. For

current IBM’s quantum devices, the longest decoherence time

achieved is less than one hundred microseconds [1]. Thus,

the reduction of latency is critical to NISQ devices for two

reasons. First, we could run larger programs within the same

decoherence time on a given quantum machine. Second, for the

current quantum programs, the coherence error can decrease

substantially by latency reduction [30], [35]. Based on our

calculations in Section II-E, the coherence error is comparable
to gate error. Thus, the fidelity, affected by both coherence and

gate error, can be improved by latency reduction.

The current compilation for quantum system is gate-based

[3] — quantum programs are first compiled into specific 1-bit

or 2-bit operations that the quantum machine supports. This

step is often referred to as synthesis [34]. These hardware-

supported gates will be further translated into corresponding

electrical signals, often referred to as pulses. The gate-based

compilation method requires little compilation time but leads

to longer latency, because the synthesis turns the desired

unitary matrix into multiple instructions whose corresponding

pulses will be concatenated to reach the target function.

To mitigate these drawbacks, physicists proposed quantum

optimal control (QOC) [12], which could directly compile

quantum state transfer or a functional unitary matrix that

emulates the operation performed by a group of gates into

control pulses. There exist multiple algorithms developed

for quantum optimal control, such as gradient ascent pulse
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engineering (GRAPE) [9] and Krotov algorithms [22], most

of which are based on gradient methods. The pulses control the

unitary matrix that represents the function of a quantum circuit

in a systematic manner. The evolving path towards the final

states could be divided into small steps. By optimizing these

steps through analytical or numerical algorithms, the quantum

optimal control can generate a sequence of control pulses that

could approximate the target matrix [12].

Quantum optimal control could effectively reduce the la-

tency of groups of quantum gates. Since the size of the unitary

matrix that represents the function of quantum gates does

not increase with the number of gates, the latency of pulses

generated by QOC based compilation does not scale with the

number of gates as much as the gate-based compilation does.

Recent work [35] has utilized this method to reduce the latency

of the aggregated gates. Together with proper gate scheduling,

it could bring considerable latency reduction.

On the other side, this method has the inevitable drawback

of requiring enormous computational resources. Currently

GRAPE only supports 10 Qubit for very simple operations

(such as 10 concurrent single-bit operations). For groups

composed of more than 5 bits, we observe that it could take

several hours to generate the corresponding pulses even for a

simple Qubit model. As a result, it is impossible to compile

a quantum program with hundreds of thousands of gates

within a day. To mitigate this problem, [25] uses automatic

differentiation with the GPU to accelerate the quantum optimal

control. However, such acceleration method only achieves

significant speedup with utilization of GPU when more than

10 Qubits are involved. The acceleration for small groups is

limited. [35] also points out the large compilation overhead

caused by QOC.

Recent work [13] addresses this problem for quantum

variational algorithms such as VQE and QAOA with partial

compilation. The variational quantum programs are executed

iteratively, the parameters (mostly rotation angle) of the cur-

rent iteration are determined by the output distribution of the

previous iteration. For this specific type of algorithms, pre-

computation can be applied to obtain the proper hyperparam-

eters for compilation that can accelerate pulse generation of

groups with different rotation angles. This method reduces

the compilation time of variational algorithms thanks to its

iterative nature: for a given group, it is “parameterized” with

only the rotation angles for different iterations, and the selected

hyparparameters can accelerate the pulse generation of all

concrete groups with rotation angles determined. To ease the

discussion, we call the concrete groups determined by the

same parameterized group as a group family. This methodol-

ogy does not work for non-variational algorithms such as Shor

algorithm [36] for the following reason. For these algorithms,

the program does not change during execution. Therefore, the

execution does not involve groups with changing parameters.

The gates implementing the whole algorithm can be only

decomposed into static groups which do not belong to the
same group family. If we use the method of [13], then the

hyparparameters of each static group need to be generated but

not reused. Clearly, [13] does not help the pulse generation

of static groups. Moreover, the recent works that optimize the

QOC based compilation do not consider its scalability, making

it not realistic to compile large quantum programs.

As the first attempt to accelerate the pulse generation

of static groups, we propose AccQOC, a comprehensive

static/dynamic hybrid workflow to transform gate groups

(equivalent to matrices) to pulses using QOC with reasonable

compilation time budget. AccQOC is composed of static pre-

compilation and accelerated dynamic compilation. First, the

quantum program is mapped to the quantum computer with

our heuristic mapping algorithm. Our mapping algorithm takes

into consideration the cross-talk effect. We aim to increase

fidelity through the mitigation of cross-talk effect. Then, we

leverage pre-compilation to generate pulses for a category

of groups to eliminate the dynamic compilation time for

them. To get this category of groups, we perform profiling

on a randomly selected set of programs with certain grouping

policy. The corresponding pulses are then generated using

QOC with binary search to determine the shortest possible

latency. Given a target program, it is first decomposed with

the same policy used in pre-compilation. For the gate groups

of which the pulse is available, there is no compilation cost.

We only need to focus on the groups that are not “covered”.

When pulses of all groups are generated, they are concatenated

together to determine the overall latency of the target quantum

program. Since different grouping policy will lead to different

overall latency, we performed six different policies on some

sample programs and pick the policy of best performance.

The second component of AccQOC deals with the dynamic

compilation of “un-covered” groups with accelerated pulse

generation. In fact, the technique applies to both those “un-

covered” groups as well as the static pre-compilation (but it is a

one time cost). The key insight is that the pulse of a group can

be generated faster based on the generated pulse of a similar
group. Thus, we can reduce the compilation time by generating

an ordered sequence of groups in which the sum of similarity
among consecutive groups in the sequence is minimized. We

can find the sequence by 1) constructing similarity graph or
SG — a complete graph in which each vertex is a gate group

and the weight of an edge is the similarity between the two

groups it connects; and 2) constructing a Minimum Spanning

Tree (MST) for SG. We will include the identity matrix (recall

that a group corresponds to a matrix) as a vertex, if no group

is similar enough, the compilation will start from the pulse of

identity matrix.

With this workflow, we are able to reach a balance between

compilation time and latency reduction. By using “map2b4l”

strategy described in section IV-B, We achieve an average of

2.43× reduction of overall latency and 9.88× reduction of

compilation time. AccQOC is more general than the method

in [13], and can handle the parameterized groups and static

groups in the same manner. Specifically, for the variational

algorithms, AccQOC will treat the groups with different

rotation angles simply as different static groups and accelerate

the pulse generation by keeping previously generated pulses
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and selecting the most similar group’s pulse as the initial

condition. Thus, AccQOC can generate new groups with

arbitrary rotation angles — our method does not use it as

a parameter. As explained before, the fidelity is affected by

both coherence error and gate error, the reduction of latency

by QOC mainly affects coherence error. In Section II-E, we

demonstrate with calculation that the two sources of errors

are comparable. Thus, reducing latency is an important way

to improve fidelity.

The rest of the paper is organized as follows: section

II gives the basic background of Quantum Computing and

states our main motivation; section III presents an overview

of our methodology; section IV describes in detail how pre-

compilation works to reduce overall latency; section V de-

scribes further optimization to reduce pre-compilation time;

section VI shows our results of pre-compilation and further

optimization; we relate previous work in section VII and

summarize our work in section VIII.

II. BACKGROUND

This section presents the necessary background of quantum

computing and quantum optimal control.

A. Basics of Quantum Bit

The essential difference between quantum computing and

classical computing lies in the property of Quantum Bit

(Qubits) [30]. A Qubit has an infinite number of states

which are different superposition of logical states 0 and

1, rather than only two logical states as in classical bits.

The state of one Qubit could be generally represented as

|ψ〉 = α|0〉 + β|1〉, where a and b are complex numbers

satisfying “|α|2 + |β|2 = 1”. The matrix that represents the

state of this one bit is |ψ〉 =

(
α
β

)
. When this Qubit is

measured on a basis of 0/1, the quantum states collapse, and

the probability of measured results being 0 and 1 is |α|2
and |β|2 respectively. Similarly a quantum system of two

Qubits have four orthogonal basis, and the quantum state could

be represented as “|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉”.

When measured, the quantum state would have probabilities

of |α|2, |β|2, |γ|2 and |δ|2 being 00,01,10,11 respectively.

Therefore, a quantum system with N Qubits would have 2N

quantum states and needs 2N complex parameters to describe.

The exponential feature of quantum states gives quantum

computers the ability to solve problems that are intractable to

classical computers. It also leads to the fundamental difficulty

in simulating a quantum system.

B. Basics of Quantum Computing

The basic element of a quantum program is the quantum

gate. These gates have different functions and could be rep-

resented by different unitary matrices. An N-bit quantum gate

could be represented by a 2N × 2N matrix. The function

of multiple gates can be computed by simply multiplying

matrices of the individual gate, respectively. For instance, the

state transfer function of a 10-bit quantum system with 5

Fig. 1: Comparison between two compilation methodologies.

The left describes classic gate-based compilation approach

[35]. Our approach on the right utilizes pre-compilation.

gates could be computed by multiplying 5 matrices of size

1024× 1024.

In the control flow of running a quantum program, the

quantum algorithm is first synthesized into several discrete

basic quantum logical gates. However, these gates may not

match the basic gates supported directly on quantum machines.

For example, a Toffoli gate is commonly used in quantum

algorithms. However, it could not be supported on quantum

hardware [11]. So it will first be decomposed into smaller

gates, then translated to control pulses.

Fig. 2: The Toffli gate often used in quantum programs is not

directly supported by a quantum computer, thus it must be

decomposed into basic gates that are compatible with quantum

hardware.

The second step is to map Qubits to physical bits residing

on the actual machine. Since the quantum program usually

can not be directly executed on certain quantum machines

due to the sparse connection between quantum bits, swap

gates are needed to be inserted to make the quantum program

compatible with the hardware. This step could be referred to

as the Qubit mapping problem. The mapping algorithms have

been discussed in detail [26], [40], [43]. Since it is essentially

an NP problem, the mapping algorithm remains possible to be

further optimized.
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After the device-dependent program is generated, the gates

need to be scheduled and translated to pulses, then they can

be executed on quantum machines. Finally the program is run

multiple times, and the result is the distribution of the output.

C. Gate-based Compilation

Fig. 3: Each gate corresponds to a pulse [3]. One-by-one

concatenation of all pulses realize the function of many gates.

The method to translate gates to pulses is gate-based compi-

lation. This method uses a gate-pulse look-up table to find the

corresponding pulse for the gate, then concatenates all pulses

together to form the final pulses for the whole program. For ex-

ample, current IBM quantum machines support u1,u2,u3, and

CNOT gates, which contain rotation operations and common

2-bit gate. Their corresponding pulses are also given in Figure

3. The category of hardware-supported gates will decide how

quantum programs are decomposed. There exist mismatches

between basic gates of quantum programs and basic gates

supported by hardware. The Toffoli gate mentioned above is

a perfect example. The 3-bit gate is not directly supported by

current quantum machines. So it must first be decomposed

into 15 basic gates, which are then directly translated into

corresponding pulses. For gates with parameters, like rotation

gates, different rotation angles determine the strength and the

length of a certain pulse. Gate-based compilation requires

minimum compilation time, but it is inefficient compared with

QOC based compilation in terms of pulse latency.

D. Quantum Optimal Control and GRAPE

Quantum optimal control [12] takes advantage of a feature

of quantum machines — states of the Qubits could be manipu-

lated with the unique and time-dependent Hamiltonian matrix

[25], [32], [39]. Among many algorithms that are based on

gradient descent, we choose one implementation of GRAPE

[20] as our tool of quantum optimal control. To approach the

target unitary matrix, the tool uses a numerical method to

evolve from initial condition to the final state. The control

pulses are divided into small steps. By gradually modifying

theses small steps with enough iterations, the output fidelity

will increase to an acceptable value. The procedure is similar

to the training algorithm of neural networks. The cost functions

(typically fidelity) could be chosen manually to emphasize

the expected characteristics of output pulses. Since the path

from an initial condition to target states is achieved through

evolution, it is not unique. How to find the optimal control for

a given target unitary matrix is still an open problem.

E. Fidelity: Coherence vs. Gate Error

In this section, we analyze the relative importance of coher-

ence error and gate error for different technologies. For super-

conducting qubits, the ratio of gate times to decoherence times

is relatively high, so even after a few gates, we do experience

the exponential decay due to decoherence. For example, the

average relaxation and coherence times for Melbourne qubits

are T1 = 57.35μs and T2 = 61.82μs [1] , the time needed

for a CX gate is approximately 974.9ns [5]. The error caused

by decoherence in the 974.9ns is 1− e−0.9749/57.35 = 1.69×
10−2. Such error is in the same order and comparable with the

average CX gate error of 2.46× 10−2. The calculation shows

that latency reduction can indeed improve overall fidelity for

superconducting quantum computers where error caused by

qubit’s decoherence is relatively high. For trapped ion system,

decoherence times are extremely long relative to gate times, so

the reduced latency may not improve fidelity as much in this

scenario, and just leads to faster time-to-solution. Moreover,

[35] shows that shorter pulses generated by QOC have simpler

shape than those generated by gate-based concatenation and

are easier to implement.

F. Cross-talk

Cross-talk is an important source of noise in quantum

computers. When instructions are executed in parallel, the

cross-talk effect will substantially reduce the fidelity of these

instructions [27]. Cross-talk comes from leakage of control

signals, and the control signals of one instruction could interact

with the control signals of parallel instructions. The strength of

the interaction is affected by the physical distance of bits these

parallel instructions operate on. Crosstalk noise is prevalent

across many of the leading qubits such as superconducting []

and trapped ion qubits [8], [15].

G. Motivation

Two recent works [13], [35] are also closely related to QOC

and both have the notion of grouping. Here we elaborate the

differences by group examples shown in Figure 14. Figure 4a

and 4b show two groups in the same “group family” (defined

in Section I) for variational algorithms, we can see that the

group structures are the same and the only difference is the

rotation angles (θ1 = π/4 vs. θ2 = π/3). [13] generates

the hyparparameters (e.g. learning rate) by pre-computation,

which can accelerate the pulse generation of groups in the

same family. In comparison, the goal of AccQOC is to accel-

erate the pulse generation for static groups after decomposition

as shown in Figure 4d. We can see that these groups can be

completely different, instead of just having different rotation

angles. Therefore, they clearly belong to the different group

family with different hyparparameters. Also, each group just

needs to be compiled once. This explains why the method of

[13] does not apply to non-variational algorithms.
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(a) Group with rotation θ1 = π/4 (b) Group with rotation θ2 = π/3

(c) Group with many qubits

(d) Typical group in our paper

Fig. 4: Groups generated by our method compared to recent

work [13], [35]. We limit our group size to ensure fast compi-

lation and good coverage. The groups generated by [35] could

be too large and not quite scalable. The grouping algorithm

proposed by [13] can only benefit variational algortihm.

Compared to the groups of [35] shown in Figure 4c, the

groups of AccQOC is much smaller. This is due to the different

goals. The goal of [35] is to achieve higher parallelism

and minimize the latency of pulses. Specifically, it finds the

commutative gates that provide more flexibility in schedul-

ing, i.e., execute the gates in the alternative order. Then,

Commutativity-aware Logical Scheduling (CLS) attempts to

schedule many gates to achieve high parallelism and thus

reduce latency. As the result, the group size tends to be large.

Without manually limiting the number of qubits or layers,

the aggregation methodology discussed in [35] would generate

groups with up to 10 qubits. It is costly to generate pulses for

groups of this size. The goal of AccQOC is to accelerate pulse

generation with the central idea of pre-compilation and group

similarity. To ensure a good coverage, the group size needs

to be relatively small (such as the examples in Figure 4d).

Moreover, a large group size will lead to many possible groups

(matrices) of that size, making it hard to take advantage of

group similarity.

From the discussion, we see that QOC can considerably

reduce latency, but with a huge computation overhead. The

prior work [13] addresses this problem for variational al-

gorithms, but the long compilation time for non-variational

Fig. 5: Crosstalk and Error Rate.

Fig. 6: Our method utilizes pre-compilation to generate a

group list and a pulse list for future reuse, so that they do

not need to undergo the time-consuming compilation process

again. For groups that are “uncovered” by pre-compilation,

we construct the MST to accelerate the computation of their

pulses.

algorithms is still an open problem. This paper makes the

first attempt to accelerate pulse generation for static groups
after decomposition based on certain policy. Specifically, our

solution leverages pre-compilation and gate group similarity

to accelerate the pulse generation with QOC. With pulses

generated for groups, the latency of a given program can be

greatly reduced. Nevertheless, our solution is a step toward

faster pulse generation but has not yet fully addressed the

problem of QOC’s large overhead of compilation time, which

scales with the size of the input quantum program.

Moreover, considering the two extreme policies of dividing

the program into many one-gate groups and into one many-

gates large group: the latter could achieve substantially more

reduction in latency than the former with huge compilation

overhead. However, the two extremes tell us little about what

is in between. In essence, our solution finds a balanced point

between the compilation time and the latency reduction.
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III. ACCQOC OVERVIEW

Figure 6 explains the overview of AccQOC and highlights

the main contributions compared with standard gate-based

compilation. Our framework shares the same part of compi-

lation front-end with gate-based compilation. But for the part

of the translation from quantum gates to control pulses, we

use pre-compilation method explained in Section IV rather

than a gate-based compilation. The first component is the

static pre-compilation. A category of groups of gates, whose

size is determined by parameters of different decomposition

policies, is first generated through randomly profiling a set of

quantum programs inside our benchmark. We use GRAPE [32]

to generate the pulse list and latency list from the category of

groups, respectively. The pulse generation is based on QOC

with binary search to determine the latency. To generate the

overall latency, dynamic programming is used solve the gate

dependency issue and concatenate pulses of all groups to-

gether. Different decomposition policies are compared against

each other in terms of their corresponding overall latency, and

we choose the one that produces the lowest latency. Based

on this policy, the pulses of the most frequent groups will be

re-generated with different parameter settings to gain better

latency. In summary, this step pre-compiles pulses for a set of

gate groups.

The second component is the accelerated dynamic compi-
lation. Given a new quantum program, we first decompose it

into groups using the chose policy above. Some groups will

be “covered” by the pre-compiled pulses, and they can be

directly used. For the “un-covered” groups, we generate an

ordered sequence from the complete similarity graph (ST) with

the similarity between a pair of groups as the weight of each

edge. This sequence minimizes the sum of similarity among
consecutive groups in the sequence and can be generated

by computing the Minimum Spanning Tree (MST) of SG.

After the pulse of all groups are obtained, the pulses for the

whole program is concatenated in a similar manner as in pre-

compilation based on DAG with dynamic programming.

Overall, AccQOC accelerates the pulse generation based

on QOC with static pre-compilation and accelerates dynamic

compiling due to similarity between groups.

IV. STATIC PRE-COMPILATION

A. Cross-talk Consideration

We take the cross-talk effect into account in the map-

ping process, because pulses are generated from hardware-

dependent quantum programs after swap insertion. When

inserting swap gates to make the quantum program compatible

with the hardware topology, we utilize the mapping tool

developed by [43]. This method uses an A* search with a

heuristic function to find the mapping.

We extend the heuristic function to take the cross-talk effect

into consideration. The extended heuristic function is:

h(σj
i ) =

∑
g∈li

h(g, σj
i ) +

∑
gm,gn∈li

Igm,gn

Where the h(σj
i ) is the function that represents the heuristic

cost of a layer li’s mapping σj
i . And the function h(g, σj

i )
calculates the physical distance between the two Qubits of

gate g. The extension we add is the indicator function of gm
and gn which will be 1 if these two gates are too close.

Figure 5 shows the cross-talk effect of real quantum com-

puter IBM Q Melbourne. The x-axis indicates different Qubit

pairs and y-axis shows error rate. Different Qubit pairs have

differnet error rate. In general, the lower the curve, the higher

fidelity is achieved. The lower curve shows the results for

the single CNOT gate without cross-talk. The higher curve

represents the fidelity of a CNOT gate operating on the same

pair of Qubits but affected by a nearby CNOT gate. We see

that these six Qubits pairs suffer from average 20% higher

error rate due to the effect of cross-talk. To evaluate the

effects of cross-talk consideration as a part of the mapping

algorithm, we quantify the total cross-talk effect as the sum

of occurrences of close CNOT pairs in each layer. This metric

is adopted from the paper [29]. The qubits are dispersively

coupled on quantum devices, which means that the cross-

talk effect is much stronger on closer qubits. This metric

also makes characterizing crosstalk more efficient [29]. As

the results shown in Figure 11 in Section VI-C, we are able

to achieve 17.6% reduction of the total cross-talk effect.

B. Grouping policy

We try several policies of generating gate groups based on

different values of n in the 2bnl cataloging system, where 2

represents the maximum number of Qubits in a gate group

and n the number of layers. We limit the maximum number

of Qubits to be 2 because a group composed of more than 2

Qubits takes too much time to train with QOC, which violates

our goal of reducing compilation time. We choose 2b2l, 2b3l,

2b4l as candidate policies, for their relatively small size makes

it realistic to profile.

There are two ways of dealing with swap operations

generated during the mapping process: treating swap as an

independent operation or decomposing swap into three CNOT

gates. Since different quantum machines may implement swap

operations in both ways, we experiment with both methods,

and differentiate them as “map” and “swap”. For each method,

we experiment with the 3 candidate policies mentioned above.

Different policies # Qubits # Layers
swap / map 2 2
swap / map 2 3
swap / map 2 4

TABLE I: The parameter settings of our 6 policies

In summary, there are a total of 6 candidate grouping poli-

cies, and we label them as “map2b2l”, “map2b3l”, “map2b4l”,

“swap2b2l”, “swap2b3l”, “swap2b4l”. And the benchmarks

we use to evaluate these policies cover lots of functions used

in existing quantum algorithms such as QFT and algorithmic

functions in classical computing.
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C. Generating Group List

The grouping process is divided into two steps. First, we

partition gates into subgroups based on 2-bit constraint. Sec-

ond, we partition each subgroup into smaller groups based on

n-layer restriction. The two steps are illustrated in Algorithm

1 and Algorithm 2, respectively.

In the bit partition step, we first transform a quantum

program into a Directed Acyclic Graph (DAG). We iterate

through the DAG following its topological order to ensure that

a node always finds its group after its predecessor does. This

way, we are able to greedily group a node with its parent nodes

whenever possible, thereby dividing DAG into subgroups of

largest possible size. In the layer partition step, we first label

each node with its global depth, then divide nodes within each

subgroup into smaller groups based on this labeled depths.

After dividing a quantum program into groups, we “de-

duplicate” these groups by calculating their corresponding

matrices and eliminating duplicated ones. Two groups with

permutated Qubits but same operations are also treated as

duplicate.

In the static pre-compilation stage, we randomly select one-

third of quantum programs from our set of benchmarks. We

use these programs to generate a category of groups for the

profiling purpose. The corresponding pulses of these groups

will be stored and reused in future quantum programs.

D. Generating Latency List and Pulse List

We use QOC to generate the pulse list and latency list from

the category of groups. The GRAPE tool we use requires target

unitary matrix, target fidelity, and target latency as inputs. The

latency of a certain group is determined by a binary search.

Short latency leads to more iterations with long training time

Algorithm 1 Bit Dividing

Require: qasm files, bit constraint(bc)

Ensure: large-groups

1: Initialize large-groups

2: for qasm in all qasm files do
3: DAG = ToDAG(qasm)

4: for node in DAG.topological-order: do
5: if node can be grouped with both predecessor then
6: Merge the groups the two predecessors are in

7: else if node can be grouped with one predecessor

then
8: Group the node with the predecessor

9: Update large-groups

10: else if node can be group with no predecessor then
11: Put the node in a new group

12: Update large-groups

13: end if
14: end for
15: end for
16: return large-groups

Algorithm 2 Layer Dividing

Require: large-groups, layer constraint(lc)

Ensure: group list

1: Initialize group-list

2: for node in DAG.topological-order: do
3: Depth[node] = max(Depth[node’s predecessor(s)]) + 1

4: end for
5: for subgroup in large-groups: do
6: startDepth = depth of shallowest node

7: layer = 0

8: Initialize temp-group

9: for node in subgroup: do
10: diff = depth[node] - start

11: if diff mod lc ≤ layer then
12: Append node to temp-group

13: else
14: Append temp-group to group-list

15: Clear temp-group

16: Append node to temp-group

17: layer += 1

18: end if
19: end for
20: end for
21: return group-list

and does not guarantee the convergence, while long latency

loses the advantages of quantum optimal control. Therefore,

binary search is necessary to ensure optimal latency within

the target fidelity convergence requirement. We set the target

fidelity cost function to be a typical value 1 × 10−4 and

maximum run time budget to be 600s for each iteration of

binary search. The available methods include ADAM, BFGS,

L-BFGS-B, and SLSQP. We choose BFGS as our optimization

method for training the pulses. To verify our idea, we use a

model of a two-level spin Qubit(ω/2π: 3.9 GHz).

E. Generating Overall Latency

After generating a group list, we restructure the original

DAG into a new DAG by turning each group into a node.

We obtain the latency of each node by iterating through the

profiling table to find its match.

Following the topological order of the new DAG, we use

dynamic programming to compute and store the until-this-

step latency at each node by adding the largest latency of

its predecessors to the latency of itself. The overall latency

computed at the last node is the overall latency of the whole

group. The detailed algorithm could be found at Algorithm 3.

F. The Effect of Sequence of Mapping and Grouping

We use two methods to solve quantum hardware constraints.

The first method is to first resolve the conflicts then perform

the grouping operation. Such method is called as “swap then

group”. The second option is to first group these gates then

concatenate the pulses of swap gates when necessary. Such
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Algorithm 3 Overall Latency

Require: qasm, profile-table, latency-table

Ensure: overall latency

1: Initialize latency (a list)

2: for node in DAG.topological-order: do
3: latency[node] = max(latency[node’s predecessor(s)]) +

latency-table[node]

4: end for
5: overall-latency = last index of latency

6: return overall-latency

method is called as “group then swap”. We explore both op-

tions because on some quantum computer the swap operation

is directly supported. We find that under certain circumstances,

mapping then grouping has lower overall latency, in which

case a swap gate is decomposed into three CNOT gates.

Such method appears to have advantage most likely because

those CNOT gates are more flexible in joining other gates.

Furthermore, these CNOT gates are more likely to be cancelled

with other CNOT gates such that the overall latency is reduced.

G. Optimizing the most frequent group

We select the group of highest frequency and spend more

time training it with different methods so that the latency of

this particular group could be further reduced. The goal is to

further reduce overall latency without the high overhead when

the pre-compiled pulses are used for a new program.

V. ACCELERATED DYNAMIC COMPILATION

A. The Notion of Coverage

After the static pre-compilation, we have the pulses for

133 profiled groups. Given a new program, it will be first

decomposed into groups with “map2b4l” For the groups that

fall into the pre-compiled set, we can directly use the pulses.

We call them as “covered” groups and AccQOC does not incur

any training overhead to generate pulses for them. We define

the coverage as follows:

Coverage Rate =
# Groups covered by our category

# Groups of the program

Clearly, the coverage is an important factor determining the

benefit of our approach. For the “un-covered” groups, we

will use dynamic QOC based compilation to generate pulses.

We also call this step as training since it resembles the

training process in machine learning. The following sections

will describe our ideas to accelerate the training process.

B. Identify Similar Groups

Since the quantum control evolves from the initial matrix

to the target matrix by multiplying time-dependent, hardware-

specific control Hamiltonian matrices, similar matrices could

share similar pulses. Therefore, pre-computed pulses could be

used as inputs to GRAPE to reduce the number of iterations

of gradient descent when we train a new group.

Fig. 7: The coverage of these programs are measured under

the policy of “map2b4l”. These programs are first decomposed

into groups and compared with pre-compiled groups to deter-

mine the coverage.

Currently we use 4 similarity functions to decide whether

groups are similar. The first two are simply the difference

between the matrices: d1(A,B) =
∑n

i=1

∑n
j=1 |aij − bij |;

d2(A,B) =
√∑n

i=1

∑n
j=1(aij − bij)2. The last two sim-

ilarity functions represent the fidelity of quantum unitary

operations: d3(A,B) = Tr(A∗B); d4(A,B) = F (A,B) =(
tr
√√

AB
√
A
)2

.

Fig. 8: It shows the average reduction of iterations required for

computing pulses using each of the five similarity functions.

Figure 8 shows the partial results of accelerated training.

We apply different similarity functions together with the SG

algorithm described below. The first four similarity function

attempts to measure the similarity between two groups, and

the fifth one is the inverse of the fourth function and aims

to measure the opposite of similarity. The result shows that

“fidelity1” function achieves most reduction of iterations, and

the fifth function causes the the number of iterations to

increase.

C. Determining Compiling Sequence with Similarity

Based on the insights that the pulse of a new group can be

generated faster with a similar group subject to a similarity

function, for all un-covered groups, our goal is to generate an

ordered Compilation Sequence CS = [g1, g2, ..., gn] (with n
uncovered groups) that minimizes the estimated compile time.

According to CS, the pulse for g1 will be generated first, and

it will be used as the initial matrix to train the pulse of g2. To

550



minimize the total compile (training) time, we ensure that the

sum of similarity between consecutive groups in the sequence

is minimized. With n groups, we have n! possible sequences

(permutations), following steps are used to obtain CS.

First, we can compute the similarity of any two pairs of

groups and construct a complete graph, denoted as similarity
graph (SG). In SG, each vertex is a group and the weight of

edge is the similarity between two groups. We also include

identity matrix as a special group in SG — when a new group

is not close enough to any groups with pulse generated, the

training of the new group will start the with identity matrix.

With SG constructed, we can compute the Minimum Spanning

Tree (MST) of SG, which minimizes the sum of edge weights.

In the process of generating MST using the greedy algorithm,

i.e., Prim algorithm, we can remember the sequence that all

vertices are selected, this sequence is exactly what we need

for CS. We choose the identity matrix as the starting point to

generate MST. Figure 9 shows an example of this procedure.

D. Parallelizing Compilation with Balanced MST Partition

For a large program, the number of group can be large,

the reduction of compilation time based on group similarity

may not be sufficient. The good news is that the dependency of

groups in CS is “soft” — even the pulse of predecessor groups

are not available, we can always train a group starting from

identity matrix. In fact, we can choose any order to train the

un-covered groups, the consequence is just the longer training

time. In this sense, we can consider that the training of each

group is independent. Thus, the job of training all groups can

be perfectly parallelized with multiple “workers” 1.

Since there is no dependency between the groups, the major

factor determining the overall performance of parallel training

is the workload assigned to each worker. In our problem

formulation with SG and MST, the problem is how to partition

the MST into multiple sub-graphs such that the difference of

critical paths of them is minimized.

To achieve such division, we utilize METIS [18], a well-

known graph partitioner to divide the MST as balanced as

possible. However, this balanced partitioning method operates

on a graph with node weights and divides it into connected

sub-parts each having a similar sum of weights. Our MST

generated from SG has only weights on its edges.

To fit METIS to our problem, we transformed the MST

graph with cost on edges into a new graph with weight on

nodes. Following the optimal sequence, we shift the cost of

each edge to the weight of its newly added neighboring node.

The first node in the sequence is specially assigned with a

value proportional to the time it takes to train the first node

from identity matrix. This step is shown in the Figure 9 from

b to c.

After the transformation, we use METIS [18] to divide the

new graph into sub-parts, each of which is computed on a

separated computer, based on its local sequence. We merge

1In this paper, we consider “workers” in abstract sense, and just focus on
how to partition the workload. In reality, it can be a thread, process, or a
CPU/GPU, or even a node in distributed computing platform.

(a) A 6-node SG (b) Minimum spanning tree

(c) MST with shifted weight (d) Balance partition of MST

Fig. 9: The procedure from SG to partitioned MST: extract

MST (b) from SG (a); shift the weight on edges to nodes (c);

partition the graph into several balanced groups of similar sum

of node weight, denoted by a distinct color (d).

pulses of all matrices after computation is done. Figure 9d

shows an example of the partitioned graph. With the generated

sub-graphs, we can assign workload to each worker to obtain

the balanced execution during parallel processing.

VI. EVALUATION

In this section, we introduce our benchmark methodology

based on the topology of IBM’s 14-Qubit Quantum Computer

available. Then we present our results of latency reduction and

compilation time reduction.

A. Benchmarks

The benchmarks are selected from previous work [43].

Their test circuit data, which originated from the RevLib

[41] is available to the public. The set of benchmarks from

RevLib contains various reversible functions implemented us-

ing quantum gates. The functions include encoding functions,

arithmetic functions, miscellaneous functions and symmetric

functions etc. Several other functions like QFT(Quantum

Fourier Transform) and GSE(Ground State Estimation)from

ScaffCC [17] are also in the benchmark suite. All programs

are mapped to the 14-bit IBM Q Melbourne chip [1] based

on superconducting technology. The comprehensive bench-

marks cover a variety of functions used in existing quantum

algorithms, such as QFT in Shor algorithm. All evaluations

are conducted on a 3.4 GHz machine with 4 cores and 40 GB

RAM. The whole benchmark suite includes 159 programs. We

randomly sampled some quantum programs with between 200

and 2000 gates, and two QFT programs to verify our idea.

Table II shows the instruction mixes of 6 programs and the

average of all programs.
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x t h cx rz tdg
4gt4-v0 79 0 56 28 105 0 42

cm152a 212 5 304 152 532 0 228
qft 10 0 0 20 90 90 0
qft 16 0 0 32 240 240 0

ex2 227 5 156 78 275 0 117
f2 232 6 300 150 525 0 225

all 0.10% 22% 15% 45% 1.1% 17%

TABLE II: Instruction Mixes of Benchmark Programs

B. Hardware Model

We use the topology from IBM Q Melbourne chip where the

two-Qubit gates are not symmetric and therefore have certain

directions. CNOT gate is only allowed in one direction. We

extend the mapping algorithm of [43] with consideration of

cross-talk to insert swap gates into the program. The direction

of the 2-bit gate and topology of Melbourne is showed in

Figure 10.

Fig. 10: Qubits connection of IBM’s melbourne chip. [3]

C. Mitigation of Cross-talk in Mapping

We quantify the overall cross-talk effect as the total occur-

rences of close CNOT operations in each layer. This metric is

adopted from the paper [29]. The rational to use this metric

is discussed in Section IV-A. Before and after our mapping

algorithm, the cross-talk effect deceases for most of the tested

quantum programs and we observe an average of 17.6% re-

duction of cross-talk effect. The systematic method to mitigate

cross-talk effect is still an open question. Nevertheless, our

workflow is the among the first to tackle the problem of cross-

talk effect by Qubit mapping. We leave the systematic study

of the problem for future work.

Fig. 11: The effect of cross-talk effect is quantified by the

sum of occurrences of nearby pairs of CNOT gates. After

the heuristic takes it into consideration, the cross-talk effect

deceases for most of the tested quantum programs.

D. Reduction of Overall Latency

Fig. 12: The latency reduction for 6 quantum programs is

shown, each with 6 policies differentiated by the gradually-

fading color scheme. The red ones represent the case in which

the most frequent group is targeted for optimization, compared

against blue ones that omit this step.

Fig. 13: Reduction of training iteration: for each of the 7

quantum programs (including a set of profiled groups by

map2b4l), 5 similarity functions are applied.

We have implemented 6 different grouping policies. These

policies feature different sizes of groups. The latency reduction

of 6 grouping policies mostly lies between 1.2× and 2.6×
compared with gate-based compilation.

In our static pre-compilation process, a target program will

have groups of gates falling into the profiled category. Among

these groups, we pick the one with highest frequency and

re-generate the pulse for this group. We will spend more

computational resource training this group such that its latency

could be reduced. This brings further latency reduction as

plotted in the Figure 12.

552



E. The effect of the sequence of mapping and grouping

The sequence of mapping and pulse generation in the

control flow is also considered. The mapping algorithm of [43]

is adopted. We find that under certain circumstances, “mapping

then grouping” has lower overall latency, in which case the

swap gate is decomposed into three CNOT gates. These CNOT

gates could form a more flexible group and are more likely to

get diminished such that the overall latency could be reduced.

However, when swap operations are directly supported in the

target machine, it is better to choose the policy “grouping

then mapping”, since hardware-supported operations are often

optimized to reach high fidelity with low latency.

F. Coverage

Here we show the coverage of 7 quantum programs under

the “map2b4l” policy. Since the category of groups is profiled

by one third of our benchmarks. The profiled category is likely

to contain most of groups that will appear in other programs.

We achieve an average coverage of 89.7%.

Moreover, Figure 14 shows that the number of 2b4l groups

grows much slower than linearly(though not strictly logarith-

mic) with the number of gates, meaning the probability of

encountering uncovered groups does not scale with the size

of a quantum program. It demonstrates the high reusability of

pre-compiled groups.

Higher coverage corresponds to lower compilation time,

since pulses of covered groups are pre-computed. However,

with larger quantum programs in the future, we expect to see

lower coverage but more latency reduction for each group.

When that happens, MST-accelerated QOC will come to

use and demonstrate its powerfulness. Hence, there exists a

clear trade-off to be considered between the pre-compilation

overhead and coverage, especially when dealing with large

quantum programs.

(a) # groups vs # gates (b) # groups vs log(# gates)

Fig. 14: The figure demonstrates the relationship between the

growth of group number and that of gate number.

G. Accelerated Training

In this part, we compare the training iterations of groups

with and without accelerated training. To directly show the

better performance of accelerated training, we demonstrate

this methodology with a pre-compiled category under the

“map2b4l” policy, which has 133 groups. As shown in Figure

13, we could reach a max iteration reduction of 28%. The

Fig. 15: Comparing AccQOC with Brute-Force QOC Training

acceleration highly relies on the size of MST we have. For

a larger MST, the two group connected are more likely to be

very close to each other. We expect to see more iteration reduc-

tion with larger quantum programs. We use iteration reduction

as our metric for computing source because the running time

of optimal control grows linearly with the number of iterations.

In our experiments, multiple optimal control programs are

executed in a multi-programmed fashion. We cannot ensure

each execution get equal system resource. Therefore, when

measuring the improvement of AccQOC, it is more reasonable

and accurate to report the number of iterations, instead of

running time.

H. Compilation Time

The most time-consuming part of our workflow is the step of

generating pulse list and latency list. After the pre-compilation

is finished, it takes no time to look up the pulses for covered

groups. Quantum programs with higher coverage will gain

more compilation time reduction, since less groups need to

be compiled to pulses. Moreover, since the size of our pre-

compiled category does not scale linearly with the size of

quantum programs, larger quantum programs will feature more

compilation reduction.

To show the relation between compile time reduction and

latency reduction, we choose the “brute force” QOC’s compi-

lation time as our baseline. The same methodology is also

used in [13]. We form the “brute force QOC” groups by

including as many qubits and gates as possible. The Figure 15

shows that the average latency reduction of AccQOC is 2.43×
while the “brute force QOC” achieves 3.01× reduction. [13]

achieves similar latency reduction as AccQOC. On the other

side, the compilation time reduction compared to “brute force”

QOC compilation is 9.88×. Thus, our method trades off minor

latency reduction (2.43× compared with 3.01×) for significant

compile time reduction (9.88×).

VII. RELATED WORK

The traditional gate-based workflow of quantum computing

has been well studied [24], [28], [33]. Techniques have been

proposed to optimize the compiler frontend [17] and the

mapping problem [26], [43]. After the idea of quantum optimal

control is proposed, some research has focused on the concrete

implementation of algorithms [9], [20], [21], [37], [42]. The
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optimal control tool developed by [25] uses GPU-based au-

tomatic differentiation to accelerate the iterations when input

matrix evolving towards target matrix. Recent work [35] no-

ticed the problem of large overhead of quantum optimal even

with GPU acceleration. However, the methodology used in

the paper does not address this problem and their methodology

does not scale with the size of the quantum programs. The idea

of utilizing commutativity could increase parallelism among

groups; but those groups are relatively large to show benefits,

making it slow for quantum optimal control to compute. For

example, the paper shows that the aggregated gates form

groups that contain up to 10 qubits, the QOC of such groups

could take hours to generate the pulses. Our solution will

not require much computation resource once our category of

groups is pre-compiled. The prior work [23] builds a library

of gates with specific rotation angles. A more recent work

[13] applies idea of pre-compilation on Quantum Variational

Algorithms. The proposed methodology of hyperparameter

tuning works well with the iterative execution of variational

algorithms. However, the methodology cannot be applied to

the static groups in non-variational algorithms. Compared to

them, AccQOC is more general and not limited to any special

types of quantum algorithms. The hybrid characteristic of our

method makes it suitable for both variational algorithms like

VQE and non-variational algorithms like Shor algorithm. It

can support arbitrary rotation angles since it simply corre-

sponds to a different matrix.

Most importantly, our workflow does not scale linearly with

the size of input program. Therefore, our workflow AccQOC
is more scalable and more suitable for future compilation of

large quantum programs.

VIII. CONCLUSION

In this paper, we propose AccQOC, a comprehensive

static/dynamic hybrid workflow to transform gate groups

(equivalent to matrices) to pulses using QOC (Quantum Opti-

mal Control) with a reasonable compilation time budget. Ac-

cQOC is composed of static pre-compilation and accelerated

dynamic compilation. We leverage static pre-compilation to

generate pulses for the frequently used groups to eliminate

the dynamic compilation time for them. The pulse is generated

using QOC with binary search to determine the latency. For

a new program, the dynamic compilation deals with “un-

covered” groups with accelerated pulse generation. The key

insight is that the pulse of a group can be generated faster

based on the generated pulse of a similar group. We propose to

reduce the compilation time by generating an ordered sequence

of groups in which the sum of similarity among consecutive

groups in the sequence is minimized. With the methodology

of AccQOC, we reached a balanced point of compilation time

and overall latency. The results show that accelerated com-

pilation based on MST achieves 9.88× compilation speedup

compared to the standard compilation of each group while

maintaining an average 2.43× latency reduction compared

with gate-based compilation.
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schrödinger’s cat: quantum optimal control. The European Physical
Journal D, 69(12):279, 2015.

[13] Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler,
Nelson Leung, Yunong Shi, David I Schuster, Henry Hoffmann, and
Frederic T Chong. Partial compilation of variational algorithms for
noisy intermediate-scale quantum machines. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 266–278. ACM, 2019.

[14] Lov K Grover. A fast quantum mechanical algorithm for database search.
arXiv preprint quant-ph/9605043, 1996.

[15] Robin Harper, Steven T Flammia, and Joel J Wallman. Efficient learning
of quantum noise. arXiv preprint arXiv:1907.13022, 2019.

[16] Jeremy Hsu. Ces 2018: Intel’s 49-qubit chip shoots for quantum
supremacy. IEEE Spectrum Tech Talk, 2018.

[17] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey
Lvov, Frederic T Chong, and Margaret Martonosi. Scaffcc: Scalable
compilation and analysis of quantum programs. Parallel Computing,
45:2–17, 2015.

[18] George Karypis and Vipin Kumar. A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. University of Minnesota, Department
of Computer Science and Engineering, Army HPC Research Center,
Minneapolis, MN, 1998.

[19] Julian Kelly, Rami Barends, Austin G Fowler, Anthony Megrant, Evan
Jeffrey, Theodore C White, Daniel Sank, Josh Y Mutus, Brooks Camp-
bell, Yu Chen, et al. State preservation by repetitive error detection in
a superconducting quantum circuit. Nature, 519(7541):66, 2015.

554



[20] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-
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